Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
PLoS One ; 16(9): e0257468, 2021.
Article in English | MEDLINE | ID: covidwho-1406756

ABSTRACT

BACKGROUND: Face masks, also referred to as half masks, are essential to protect healthcare professionals working in close contact with patients with COVID-19-related symptoms. Because of the Corona material shortages, healthcare institutions sought an approach to reuse face masks or to purchase new, imported masks. The filter quality of these masks remained unclear. Therefore, the aim of this study was to assess the quality of sterilized and imported FFP2/KN95 face masks. METHODS: A 48-minute steam sterilization process of single-use FFP2/KN95 face masks with a 15 minute holding time at 121°C was developed, validated and implemented in the Central Sterilization Departments (CSSD) of 19 different hospitals. Masks sterilized by steam and H2O2 plasma as well as new, imported masks were tested for particle filtration efficiency (PFE) and pressure drop in a custom-made test setup. RESULTS: The results of 84 masks tested on the PFE dry particle test setup showed differences of 2.3±2% (mean±SD). Test data showed that the mean PFE values of 444 sterilized FFP2 face masks from the 19 CSSDs were 90±11% (mean±SD), and those of 474 new, imported KN95/FFP2 face masks were 83±16% (mean±SD). Differences in PFE of masks received from different sterilization departments were found. CONCLUSION: Face masks can be reprocessed with 121 °C steam or H2O2 plasma sterilization with a minimal reduction in PFE. PFE comparison between filter material of sterilized masks and new, imported masks indicates that the filter material of most reprocessed masks of high quality brands can outperform new, imported face masks of unknown brands. Although the PFE of tested face masks from different sterilization departments remained efficient, using different types of sterilization equipment, can result in different PFE outcomes.


Subject(s)
COVID-19/prevention & control , Masks , Sterilization , COVID-19/transmission , Equipment Reuse , Health Personnel , Humans , Hydrogen Peroxide , Masks/standards , SARS-CoV-2/physiology , Steam , Sterilization/standards
2.
J Hosp Infect ; 106(2): 246-253, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-739030

ABSTRACT

BACKGROUND: There is a worldwide shortage of medical-grade face masks. Donning masks can play an important role in curbing the spread of SARS-CoV-2. AIM: To conclude whether there is an effective mask for the population to wear in public that could easily be made during a medical face mask shortage using readily available materials. METHODS: We determined the effectiveness of readily available materials and models for making a face mask. The outcomes were compared with N95/FFP2/KN95 masks that entered the Netherlands in April-May 2020. Masks were tested to determine whether they filtered a minimum of 35% of 0.3-µm particles, are hydrophobic, seal on the face, are breathable, and can be washed. FINDINGS: Fourteen of the 25 (combinations of) materials filtered at least 35% of 0.3-µm particles. Four of the materials proved hydrophobic, all commercially manufactured filters. Two models sealed the face. Twenty-two of the 25 materials were breathable at <0.7 mbar. None of the hydrophobic materials stayed intact after washing. CONCLUSIONS: It would be possible to reduce the reproduction rate of SARS-CoV-2 from 2.4 to below one if 39% of the population would wear a mask made from ePM1 85% commercially manufactured filter fabric and in a duckbill form. This mask performs better than 80% of the imported N95/FFP2/KN95 masks and provides a better fit than a surgical mask. Two layers of quilt fabric with a household paper towel as filter is also a viable choice for protecting the user and the environment.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Equipment Design/standards , Guidelines as Topic , Masks/standards , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Respiratory Protective Devices/standards , Textiles/standards , COVID-19 , Humans , Netherlands , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL